Visualization of Microseismic Processing by Coding with GNU Octave



Aditya Yoga Purnama(1*), Kholis Nurhanafi(2), Susanti Susanti(3), Nugroho Budi Wibowo(4),

(1) Universitas Sarjanawiyata Tamansiswa
(2) Universitas Mulawarman
(3) Universitas Sarjanawiyata Tamansiswa
(4) Badan Meteorologi Klimatologi dan Geofisika (BMKG) Yogyakarta
(*) Corresponding Author

Abstract


The use of software in the field of geophysics is often limited to the instantaneous use of interfaces without a deep understanding of the computational processes behind them. This leads to limitations in data interpretation and the development of new methods. To address this issue, it is necessary to explicitly visualize the data processing process through programming in order to strengthen computational thinking skills, which are one of the important competencies of the 21st century. This study aims to visualize the microseismic data processing process using programming in GNU Octave software. The method used is a simulation of microseismic data processing based on the HVSR (Horizontal to Vertical Spectral Ratio) approach, with field data collected from the Yogyakarta area. The processing is carried out by building a programming script in GNU Octave, the results of which are then compared with the Geopsy software as a verification tool. The research results indicate that data processing visualization using the HVSR method through GNU Octave can be performed effectively, and the results exhibit high consistency with the output from Geopsy. The dominant frequency on both curves is the same at a frequency of 1.59 Hz. In addition to the dominant frequency, the HVSR curve shape of both software also shows a similar trend pattern in the mid to high frequency range (around 2–10 Hz), where the amplification value decreases gradually. This demonstrates the accuracy of the developed script and proves that this approach can serve as an educational tool for understanding the functioning of geophysical software in a more transparent and in-depth manner. Programming with GNU Octave can be used as an efficient and accurate geophysical analysis tool. This provides opportunities for users, especially in academic environments with limited access to commercial software.

Keywords


GNU Octave; HVSR; Microseismic; Visualization

Full Text:

PDF

References


Beauval, C., Scotti, O., & Bonilla, F. (2006). The role of seismicity models in probabilistic seismic hazard estimation: Comparison of a zoning and a smoothing approach. Geophysical Journal International, 165(2), 584–595. https://doi.org/10.1111/j.1365-246X.2006.02945.x

Bodin, P., Smith, K., Horton, S., & Hwang, H. (2001). Microtremor observations of deep sediment resonance in metropolitan Memphis, Tennessee. Engineering Geology, 62(1–3), 159–168. https://doi.org/10.1016/S0013-7952(01)00058-8

Christi, S. R., & Rajiman, W. (2023). Pentingnya Berpikir Komputasional dalam Pembelajaran Matematika. Journal on Education, 5(4), 12590–12598. https://doi.org/10.31004/joe.v5i4.2246

Haerudin, N., Rustadi, Alami, F., & Yogi, I. B. S. (2020). The effect site analysis based on microtremor data using the Horizontal to Vertical Spectral Ratio (HVSR) method in the Bandar Lampung City. Journal of Physics: Conference Series, 1572(1). https://doi.org/10.1088/1742-6596/1572/1/012075

Handayani, D., Agung Pratama, D., & Koagouw, J. E. (2023). Analisis Mikrotremor Untuk Mengetahui Karakteristik Tanah Di Sekitar Jembatan Amurang, Minahasa Selatan. Jurnal Widya Climago, 5(1), 119–124. www.un-spider.org

Jacob, S. R., & Warschauer, M. (2018). Computational Thinking and Literacy. Journal of Computer Science Integration, 1(1).

Korucu, A. T., Gencturk, A. T., & Gundogdu, M. M. (2017). Examination of the computational thinking skills of students. Journal of Learning and Teaching in Digital Age, 2(1), 11–19. https://dergipark.org.tr/en/pub/joltida/issue/55466/760079

Kyaw, Z. L., Pramumijoyo, S., Husein, S., Fathani, T. F., & Kiyono, J. (2015). Seismic Behaviors Estimation of the Shallow and Deep Soil Layers Using Microtremor Recording and EGF Technique in Yogyakarta City, Central Java Island. Procedia Earth and Planetary Science, 12, 31–46. https://doi.org/10.1016/j.proeps.2015.03.024

Lima, V. H. L. C., Rodrigues, R. do N., Bezerra, R. de A., & Lamary, P. M. C. (2021). APPLICATION OF THE GNU OCTAVE PROGRAMMING TOOL IN STATIC DISCIPLINE FOR ENGINEERING. Revista de Ensino de Engenharia, 40(1), 65–75. https://doi.org/10.37702/ree2236-0158.v40p65-75.2021

Motamed, R., Ghalandarzadeh, A., Tawhata, I., & Tabatabaei, S. H. (2007). Seismic microzonation and damage assessment of Bam City, Southeastern Iran. Journal of Earthquake Engineering, 11(1), 110–132. https://doi.org/10.1080/13632460601123164

Orive-Miguel, D., Hervé, L., Condat, L., & Mars, J. (2019). Improving localization of deep inclusions in time-resolved diffuse optical tomography. Applied Sciences (Switzerland), 9(24), 1–27. https://doi.org/10.3390/app9245468

Perdhana, R., & Nurcahya, B. E. (2019). Seismic microzonation based on microseismic data and damage distribution of 2006 Yogyakarta Earthquake. E3S Web of Conferences, 76, 4–7. https://doi.org/10.1051/e3sconf/20197603008

Prabowo, U. N., Budhi, W., & Amalia, A. F. (2020). Analisis Mikrotremor Untuk Mengevaluasi Kerentanan Gempabumi Ruangan Prodi Pend Fisika Ust. Science Tech: Jurnal Ilmu Pengetahuan Dan Teknologi, 6(1), 10–16. https://doi.org/10.30738/jst.v6i1.6569

Purnama, A. Y., Kuswanto, H., Rani, S. A., Putranta, H., Hariati, P., Yogyakarta, U. N., Yogyakarta, U. N., Pendidikan, I., Tamansiswa, U. S., & Batikan, J. (2021). Simulasi Difraksi Fraunhofer Menggunakan Media Spreadsheet dan GNU Octave Sebagai Alternatif Pembelajaran dimasa Pandemi. 5(2), 1–8.

Putra, R. R., & Saputra, D. (2022). Assessment Tingkat Kerentanan Bangunan Bertingkat di Kampus Universitas Negeri Padang Menggunakan Gelombang Rayleigh. Jurnal Serambi Engineering, 7(1), 2638–2648. https://doi.org/10.32672/jse.v7i1.3826

Rahpeyma, S., Halldorsson, B., Olivera, C., Green, R. A., & Jónsson, S. (2016). Detailed site effect estimation in the presence of strong velocity reversals within a small-aperture strong-motion array in Iceland. Soil Dynamics and Earthquake Engineering, 89, 136–151. https://doi.org/10.1016/j.soildyn.2016.07.001

Riswandi, H., Ikhsan, I., Maharani, Ph.D, Y. N., Wijayanto, W., Sunardi, B., Ekarsti, A. K., Rizkianto, Y., & Syaifudin, M. (2023). Pemetaan Mikrozonasi Bahaya Gempabumi Sebagai Upaya Pengurangan Risiko Bencana Di Yogyakarta. Jurnal Mineral, Energi, Dan Lingkungan, 7(1), 23. https://doi.org/10.31315/jmel.v7i1.7743

Romandoni, H. R., Maharani, S., Firdaus, T. C. M., & Septyawan, A. (2016). EDUCARE : Jurnal Pendidikan dan Kesehatan Analisis Bibliometrik : Games Computational Thinking dalam Pembelajaran. EDUCARE: Jurnal Pendidikan Dan Kesehatan, 1(1), 20–28.

Satoh, T., Kawase, H., & Matsushima, S. (2001). Differences between site characteristics obtained from microtremors, S-waves, P-waves, and codas. Bulletin of the Seismological Society of America, 91(2), 313–334. https://doi.org/10.1785/0119990149

Shibata, K., Takahashi, E., Fujiwara, H., Suda, T., Kondoh, J., Hirose, T., Toyota, Y., & Ozaki, M. (2017). Long range wireless SAW passive tag system for vibration monitoring. IEEE International Ultrasonics Symposium, IUS. https://doi.org/10.1109/ULTSYM.2017.8091922

Sitti Fauziah Faradilla, Hamimu, L. H., & Juarzan, L. I. (2024). Implementasi Matrix Laboratory Dalam Pengolahan Data Mikrotremor Menggunakan Metode Hvsr: Studi Kasus Di Daerah Pesisir Kecamatan Moramo. Jurnal Rekayasa Geofisika Indonesia, 6(02), 118–134. https://doi.org/10.56099/jrgi.v6i02.48

Sulistya, E. (2004). Penggunaan Komputer Dalam Pembelajaran Untuk Memperkuat Pemahaman Konsep-Konsep Fisika. Prosiding Seminar Nasional Fisika Dan Pendidikan Fisika, 198–201.

Thabet, M. (2019). Site-Specific Relationships between Bedrock Depth and HVSR Fundamental Resonance Frequency Using KiK-NET Data from Japan. Pure and Applied Geophysics, 176(11), 4809–4831. https://doi.org/10.1007/s00024-019-02256-7

Thamrin, H., Fajarianto, O., & Ahmad, A. (2021). Pelatihan Pemrograman Css Dan Html Di Smk Avicena. Abdimas Awang Long, 4(1), 51–60. https://doi.org/10.56301/awal.v4i1.125

Yuliawati, W. S., Rasimeng, S., & Karyanto. (2009). PENGOLAHAN DATA MIKROTREMOR BERDASARKAN METODE HVSR DENGAN MENGGUNAKAN MATLAB. Jurnal Geofisika Eksplorasi, 5(1), 45–59.

Zhang, Z., Chen, X., Gao, M., Li, Z., & Li, Q. (2018). Simulation of the microtremor H/V spectrum based on the theory of surface wave propagation in a layered half-space. Acta Geophysica, 66(2), 121–130. https://doi.org/10.1007/s11600-018-0112-7




DOI: https://doi.org/10.30998/npjpe.v7i1.3965

Article Metrics

Abstract Views : 0 | PDF Views : 0

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Aditya Yoga Purnama, Kholis Nurhanafi, Susanti Susanti, Nugroho Budi Wibowo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Department of Physics Education
Faculty of Mathematics and Sciences
Universitas Indraprasta PGRI

Address: Jl. Raya Tengah No. 80, Kel. Gedong, Kec. Pasar Rebo, Jakarta Timur 13760 , Jakarta, Indonesia. 
Phone: +62 (021) 7818718 – 78835283 | Close in sunday and public holidays in Indonesia
Work Hours: 09.00 AM – 08.00 PM
Best hours to visit: From 9 am to 11 am or after 3 pm. The busiest times are between 11 am and 3 pm. 

Creative Commons License
Navigation Physics: Journal of Physics Education is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License