Modelling the Tunneling in 1D Schrodinger Equation Using Graphical User Interface
Alpi Mahisha Nugraha(1*), Nurullaeli Nurullaeli(2),
(1) Program Studi Teknik Informatika,Fakultas Teknik dan Ilmu Komputer, Universitas Indraprasta PGRI Jakarta
(2) Program Studi Teknik Informatika,Fakultas Teknik dan Ilmu Komputer, Universitas Indraprasta PGRI Jakarta
(*) Corresponding Author
Abstract
Quantum tunneling is a phenomenon where particles have a probability of penetrating a potential barrier despite having total energy llower than the barrier height. This study analyzes the tunneling effect by solving the one-dimensional (1D) Schrodinger equation using the finite difference method to obtain the wave function evolution for various potential barrier configurations. The solution is implemented in a Graphical User Interface (GUI) MATLAB to facilitate analysis and visualization, allowing users to interactively adjust potential parameters, energy, and other conditions. Simualation results demonstratehow transmission probability depends on energy, height and width of potential barrier. This GUI provides an intiuitive tool for exploring quantun tunneling, making it valuable for both education and research in quantum physics.
Keywords
Full Text:
PDFReferences
Dinnullah, R. N. I. (2015). Solusi Eksak Gelombang Soliton: Persamaan Schrodinger Nonlinear Nonlokal (NNLS). Cauchy, 3(4), 39–44.
Doyan, A., Susilawati, & Hikmawati. (2020). Pengaruh Penerapan Model Pembelajaran Berbasis Masalah Terhadap Hasil Belajar Pada Matakuliah Fisika Kuantum bagi Mahasiswa Calon Guru. Orbita: Jurnal Hasil Kajian, Inovasi, Dan Aplikasi Pendidikan Fisika, 6(2), 278–283.
Luba, C. S. U., Warsito, A., & Pingak, R. K. (2021). Kajian Komputasi Numerik Energi Eigen Elektron dalam Sumur Potensial Berhingga (Vol. 6, Issue 1).
Manurung, S. R., Harahap, M. B., Rustaman, N. Y., & Brotosiswoyo, B. S. (2018). Implementasi Laboratorium Virtual dalam Pembelajaran Pendahuluan Fisika Kuantum untuk Meningkatkan Kemahiran Generik. Jurnal Kependidikan, 2(2), 382–394.
Prayitno, T. B. (2011). Massa Klasik Soliton Persamaan Schrodinger Nonlinear. Berkala Fisika, 14(3), 75–80.
Saregar, A. (2015). Analisis Spektrum Energi dan Fungsi Gelombang Potensial Non-Central Menggunakan Supersimetri Mekanika Kuantum. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 4(2), 193–203. https://doi.org/10.24042/jpifalbiruni.v4i2.92
Supriadi, B., Prastowo, H. B., Amrullah, A. F., & Ridlo, Z. R. (2017). Solusi efek terobosan penghalang ganda dengan persamaan Schrödinger dua dimensi.
Tiandho, Y. (2016). Partikel Dirac dalam Sumur Potensial Dinamis. In Jurnal EduMatSains (Vol. 1, Issue 1).
Yanuarief, C., & Al-Faruq, A. (2019). Solusi Metode Numerik Beda Hingga pada Visualisasi Fungsi Gelombang Persamaan Schrodinger Potensial Non Sentral Coulombic Rosen Morse. Sunan Kalijaga Journal, 1, 28–36.
Yuli Yanti, R., Aminoto, T., & Berthalita Pujaningsih, F. (2017). Pengembangan Modul Elektronik Menggunakan 3D PageFlip Professional Materi Atom Hidrogen Pada Mata Kuliah Fisika Kuantum. JurnalEduFisika, 02(01), 13–24.
Yuliani, H. (2017). Pembelajaran Fisika menggunakan Media Animasi Macromedia Flash-MX dan Gambar untuk Meningkatkan Pemahaman Konsep Mahasiswa. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 6(1), 13–21. https://doi.org/10.24042/jpifalbiruni.v6i1.596
DOI: https://doi.org/10.30998/npjpe.v7i1.3952
Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2025 alpi mahisha nugraha, Nurullaeli Nurullaeli

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Department of Physics Education Faculty of Mathematics and Sciences Universitas Indraprasta PGRI Address: Jl. Raya Tengah No. 80, Kel. Gedong, Kec. Pasar Rebo, Jakarta Timur 13760 , Jakarta, Indonesia. |
|