Hamiltonian Penggerak Sistem Spin Dengan Lamor Frequency Menggunakan Metode Fast Forward & Shortcut to Adiabaticity
Klarisa Yulia Sari(1*), Iwan Setiawan(2), Desy Hanisa Putri(3),
(1) Universitas Bengkulu
(2) Universitas Bengkulu
(3) Universitas Bengkulu
(*) Corresponding Author
Abstract
Penelitian ini merupakan penelitian studi pustaka dengan mengkaji beberapa literatur yang selaras dan menggunakan perhitungan analitik. Penelitian ini bertujuan untuk membandingkan dua metode dalam mempercepat dinamika kuantum adiabatik, yaitu metode fast forward dan Shortcuts to Adiabaticity (STA), yang memiliki relevansi signifikan dalam pengembangan teknologi kuantum, khususnya dalam aplikasi teknik pencitraan seperti NMR dan MRI. Penelitian ini meninjau bagaimana kedua metode dapat mempercepat dinamika kuantum sistem spin dengan parameterisasi medan magnet Larmor frequency tanpa mengubah karakteristik sistem tersebut. Metodologi yang digunakan adalah studi literatur lalu melakukan perhitungan analitik untuk mencari suku regularisasi dan Hamiltonian tambahan. Medan magnet dari Larmor frequency digunakan untuk mencari Hamiltonian awal lalu analisis solusi fungsi gelombang dan Hamiltonian tambahan. Hasil yang didapatkan yakni perbandingan suku regularisasi dan suku Hamiltonian tambahan dari kedua metode. Dimana pada metode fast forward didapatkan hasil yang lebih sederhana dan sebaliknya, namun keduanya tetap dapat mempertahankan keadaan adiabatik sistem.
Keywords
Full Text:
PDFReferences
Ainayah, N., Setiawan, I., & Hamdani, D. (2022). Methods To Accelerate Equilibrium in Overdamped Brownian Motion. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 8(2), 212–225. http://doi.org/10.25273/jpfk.v8i2.13626
Aszhar, J., Setiawan, I., & Medriati, R. (n.d.). Method for accelerating equilibrium in perfectly damped Brownian motion motion with harmonic potential. Kasuari: Physics Education Journal (KPEJ), x.
Benggadinda, A., & Setiawan, I. (2021). Metoda Fast Forward Untuk Mempercepat Dinamika Kuantum Adiabatik Pada Spin Tunggal. JST (Jurnal Sains dan Teknologi), 10(2), 274–280. https://doi.org/10.23887/jstundiksha.v10i2.39876
Berry, M. V. (2009). Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical, 42(36). https://doi.org/10.1088/1751-8113/42/36/365303
Chen, X., & Muga, J. G. (2010). Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Physical Review A - Atomic, Molecular, and Optical Physics, 82(5), 1–7. https://doi.org/10.1103/PhysRevA.82.053403
Del Campo, A. (2013). Shortcuts to adiabaticity by counterdiabatic driving. Physical Review Letters, 111(10), 1–5. https://doi.org/10.1103/PhysRevLett.111.100502
Elisa, N., Setiawan, I., & Hamdani, D. (2022). Energi Penggerak untuk Mempercepat Kesetimbangan Gerak Brown Teredam Sebagian ( Underdamped ). jurnal inovasi dan pembelajaran fisika, 10(1), 21–33. https://doi.org/https://doi.org/10.36706/jipf.v10i1.19240
Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., & Muga, J. G. (2019). Shortcuts to adiabaticity: Concepts, methods, and applications. Reviews of Modern Physics, 91(4). https://doi.org/10.1103/RevModPhys.91.045001
Hutagalung, M., Setiawan, I., & Hamdani, D. (2023). Kajian Literatur Fase Adiabatik untuk Mempercepat dinamika Kuantum Adiabatik pada Osilator Harmonik. Indonesian Journal of Applied Physics (IJAP), 13(1), 106–116.
Khujakulov, A., & Nakamura, K. (2016). Scheme for accelerating quantum tunneling dynamics. Physical Review A, 93(2), 1–11. https://doi.org/10.1103/PhysRevA.93.022101
Kiselev, V. G. (2019). Larmor frequency in heterogeneous media. Journal of Magnetic Resonance, 299, 168–175. https://doi.org/10.1016/j.jmr.2018.12.008
Masuda, S, & Nakamura, K. (2022). Fast-forward scaling theory. Philosophical Transactions Royal Society A, 380(20210278). https://doi.org/https://doi.org/10.1098/rsta.2021.0278
Masuda, Shumpei, & Nakamura, K. (2009). Fast-forward of adiabatic dynamics in quantum mechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2116), 1135–1154. https://doi.org/10.1098/rspa.2009.0446
Nakamura, K., Khujakulov, A., Avazbaev, S., & Masuda, S. (2017). Fast forward of adiabatic control of tunneling states. Physical Review A, 95(6), 1–12. https://doi.org/10.1103/PhysRevA.95.062108
Patra, A., & Jarzynski, C. (2021). Semiclassical fast-forward shortcuts to adiabaticity. Physical Review Research, 3(1), 1–8. https://doi.org/10.1103/PhysRevResearch.3.013087
Pingak, R. K., Kolmate, R., & Bernandus, B. (2019). A Simple Matrix Approach to Determination of the Helium Atom Energies. Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 9(1), 10. https://doi.org/10.26740/jpfa.v9n1.p10-21
Restu, Saputra, M. I., Triyono, A., & Suwaji. (2021). Metode Penelitian. Depublish.
Rohayati, S., Setiawan, I., & Risdianto, E. (2023). Regularization Phase and Auxiliary Potential to MAintain Adiabatic Quantum Dynamics At Delta Function Potential. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 9(2), 87–113.
Setiawan, I. (2019). Dinamika Spin Kuantum Adiabatik Dipercepat Pada Model Landau-Zener Dan Model Ising. Jurnal Kumparan Fisika, 2(1), 57–64. https://doi.org/10.33369/jkf.2.1.57-64
Setiawan, I., Eka Gunara, B., Masuda, S., & Nakamura, K. (2017). Fast forward of the adiabatic spin dynamics of entangled states. Physical Review A, 96(5), 1–11. https://doi.org/10.1103/PhysRevA.96.052106
Setiawan, I., Ekawita, R., Sugihakim, R., & Gunara, B. E. (2023). Fast-forward adiabatic quantum dynamics of XY spin model on three spin system. Physica Scripta, 98(2), 1–13. https://doi.org/10.1088/1402-4896/acb2fe
Setiawan, I., Gunara, B. E., & Nakamura, K. (2019). Fast forward of adiabatic spin dynamics : An application to quantum annealing model in triangle spin systems. Journal of Physics: Conference Series, 1245(1), 1–9. https://doi.org/10.1088/1742-6596/1245/1/012077
Setiawan, I., Sugihakim, R., Gunara, B. E., Masuda, S., & Nakamura, K. (2023). Fast-forward generation of non-equilibrium steady states of a charged particle under the magnetic field. Progress of Theoretical and Experimental Physics, 2023(6), 1–12. https://doi.org/10.1093/ptep/ptad067
Syafitri, D., Setiawan, I., Studi, P., Fisika, P., & Bengkulu, U. (2023). Analisis Fase Tambahan , Potensial Tambahan , dan Rapat Arus Adiabatik Sistem Kuantum Dengan Potensial Tangga. Navigation Physics : Journal of Physics EducationSyafitri, D., Setiawan, I., Studi, P., Fisika, P., & Bengkulu, U. (2023). Analisis Fase Tambahan , Potensial Tambahan , dan Rapat Arus Adiabatik Sistem Kuantum Dengan Potensial Tangga. Navigation Physics : , 5(2), 66–76. https://doi.org/https://doi.org/10.30998/npjpe.v5i2.2367
Torrontegui, & Martínez-Garaot. (2012). Shortcuts to adiabaticity: fast-forward approach. 1, 1–7. https://doi.org/https://doi.org/10.1103/PhysRevA.86.013601
Wagner, E. P. (2014). Understanding Precessional Frequency , Spin-Lattice and Spin-Spin Interactions in Pulsed Nuclear Magnetic Resonance Spectroscopy. January, 1–13.
DOI: https://doi.org/10.30998/npjpe.v6i2.3406
Article Metrics


Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Klarisa Yulia Sari

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Department of Physics Education Faculty of Mathematics and Sciences Universitas Indraprasta PGRI Address: Jl. Raya Tengah No. 80, Kel. Gedong, Kec. Pasar Rebo, Jakarta Timur 13760 , Jakarta, Indonesia. |
|