Hamiltonian Penggerak Sistem Spin Dengan Lamor Frequency Menggunakan Metode Fast Forward & Shortcut to Adiabaticity



Klarisa Yulia Sari(1*), Iwan Setiawan(2), Desy Hanisa Putri(3),

(1) Universitas Bengkulu
(2) Universitas Bengkulu
(3) Universitas Bengkulu
(*) Corresponding Author

Abstract


This study looks at a number of sources that are pertinent to the research question and includes analytical computations. This study aims to compare two methods in accelerating adiabatic quantum dynamics, namely the Fast forward method and Shortcuts to Adiabaticity (STA), which have significant relevance in developing quantum technology, especially in applying imaging techniques such as NMR and MRI. The study examined how these two methods can accelerate quantum dynamics without changing the system's characteristics. This study examined a single spin system by involving a magnetic field with a Larmor Frequency referred to as the adiabatic state. The formulation of the problem raised includes determining the regularization term and comparing the additional Hamiltonian methods. The methodology used to obtain the regularization term with the parameterization of the magnetic field based on the frequency of the Larmor, as well as the analysis of the wave function solution and additional Hamiltonian. The results obtained from this study are regularization terms and additional Hamiltonian terms that can shorten the dynamics of the system in an adiabatic way.


Keywords


Dinamika Kuantum; Fast Forward; Shortcuts to Adiabaticity (STA); Larmor Frequency.

References


Ainayah, N., Setiawan, I., & Hamdani, D. (2022). Methods To Accelerate Equilibrium in Overdamped Brownian Motion. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 8(2), 212–225. http://doi.org/10.25273/jpfk.v8i2.13626

Aszhar, J., Setiawan, I., & Medriati, R. (n.d.). Method for accelerating equilibrium in perfectly damped Brownian motion motion with harmonic potential. Kasuari: Physics Education Journal (KPEJ), x.

Benggadinda, A., & Setiawan, I. (2021). Metoda Fast Forward Untuk Mempercepat Dinamika Kuantum Adiabatik Pada Spin Tunggal. JST (Jurnal Sains dan Teknologi), 10(2), 274–280. https://doi.org/10.23887/jstundiksha.v10i2.39876

Berry, M. V. (2009). Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical, 42(36). https://doi.org/10.1088/1751-8113/42/36/365303

Chen, X., & Muga, J. G. (2010). Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Physical Review A - Atomic, Molecular, and Optical Physics, 82(5), 1–7. https://doi.org/10.1103/PhysRevA.82.053403

Del Campo, A. (2013). Shortcuts to adiabaticity by counterdiabatic driving. Physical Review Letters, 111(10), 1–5. https://doi.org/10.1103/PhysRevLett.111.100502

Elisa, N., Setiawan, I., & Hamdani, D. (2022). Energi Penggerak untuk Mempercepat Kesetimbangan Gerak Brown Teredam Sebagian ( Underdamped ). jurnal inovasi dan pembelajaran fisika, 10(1), 21–33. https://doi.org/https://doi.org/10.36706/jipf.v10i1.19240

Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., & Muga, J. G. (2019). Shortcuts to adiabaticity: Concepts, methods, and applications. Reviews of Modern Physics, 91(4). https://doi.org/10.1103/RevModPhys.91.045001

Hutagalung, M., Setiawan, I., & Hamdani, D. (2023). Kajian Literatur Fase Adiabatik untuk Mempercepat dinamika Kuantum Adiabatik pada Osilator Harmonik. Indonesian Journal of Applied Physics (IJAP), 13(1), 106–116.

Khujakulov, A., & Nakamura, K. (2016). Scheme for accelerating quantum tunneling dynamics. Physical Review A, 93(2), 1–11. https://doi.org/10.1103/PhysRevA.93.022101

Kiselev, V. G. (2019). Larmor frequency in heterogeneous media. Journal of Magnetic Resonance, 299, 168–175. https://doi.org/10.1016/j.jmr.2018.12.008

Masuda, S, & Nakamura, K. (2022). Fast-forward scaling theory. Philosophical Transactions Royal Society A, 380(20210278). https://doi.org/https://doi.org/10.1098/rsta.2021.0278

Masuda, Shumpei, & Nakamura, K. (2009). Fast-forward of adiabatic dynamics in quantum mechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2116), 1135–1154. https://doi.org/10.1098/rspa.2009.0446

Nakamura, K., Khujakulov, A., Avazbaev, S., & Masuda, S. (2017). Fast forward of adiabatic control of tunneling states. Physical Review A, 95(6), 1–12. https://doi.org/10.1103/PhysRevA.95.062108

Patra, A., & Jarzynski, C. (2021). Semiclassical fast-forward shortcuts to adiabaticity. Physical Review Research, 3(1), 1–8. https://doi.org/10.1103/PhysRevResearch.3.013087

Pingak, R. K., Kolmate, R., & Bernandus, B. (2019). A Simple Matrix Approach to Determination of the Helium Atom Energies. Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 9(1), 10. https://doi.org/10.26740/jpfa.v9n1.p10-21

Restu, Saputra, M. I., Triyono, A., & Suwaji. (2021). Metode Penelitian. Depublish.

Rohayati, S., Setiawan, I., & Risdianto, E. (2023). Regularization Phase and Auxiliary Potential to MAintain Adiabatic Quantum Dynamics At Delta Function Potential. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 9(2), 87–113.

Setiawan, I. (2019). Dinamika Spin Kuantum Adiabatik Dipercepat Pada Model Landau-Zener Dan Model Ising. Jurnal Kumparan Fisika, 2(1), 57–64. https://doi.org/10.33369/jkf.2.1.57-64

Setiawan, I., Eka Gunara, B., Masuda, S., & Nakamura, K. (2017). Fast forward of the adiabatic spin dynamics of entangled states. Physical Review A, 96(5), 1–11. https://doi.org/10.1103/PhysRevA.96.052106

Setiawan, I., Ekawita, R., Sugihakim, R., & Gunara, B. E. (2023). Fast-forward adiabatic quantum dynamics of XY spin model on three spin system. Physica Scripta, 98(2), 1–13. https://doi.org/10.1088/1402-4896/acb2fe

Setiawan, I., Gunara, B. E., & Nakamura, K. (2019). Fast forward of adiabatic spin dynamics : An application to quantum annealing model in triangle spin systems. Journal of Physics: Conference Series, 1245(1), 1–9. https://doi.org/10.1088/1742-6596/1245/1/012077

Setiawan, I., Sugihakim, R., Gunara, B. E., Masuda, S., & Nakamura, K. (2023). Fast-forward generation of non-equilibrium steady states of a charged particle under the magnetic field. Progress of Theoretical and Experimental Physics, 2023(6), 1–12. https://doi.org/10.1093/ptep/ptad067

Syafitri, D., Setiawan, I., Studi, P., Fisika, P., & Bengkulu, U. (2023). Analisis Fase Tambahan , Potensial Tambahan , dan Rapat Arus Adiabatik Sistem Kuantum Dengan Potensial Tangga. Navigation Physics : Journal of Physics EducationSyafitri, D., Setiawan, I., Studi, P., Fisika, P., & Bengkulu, U. (2023). Analisis Fase Tambahan , Potensial Tambahan , dan Rapat Arus Adiabatik Sistem Kuantum Dengan Potensial Tangga. Navigation Physics : , 5(2), 66–76. https://doi.org/https://doi.org/10.30998/npjpe.v5i2.2367

Torrontegui, & Martínez-Garaot. (2012). Shortcuts to adiabaticity: fast-forward approach. 1, 1–7. https://doi.org/https://doi.org/10.1103/PhysRevA.86.013601

Wagner, E. P. (2014). Understanding Precessional Frequency , Spin-Lattice and Spin-Spin Interactions in Pulsed Nuclear Magnetic Resonance Spectroscopy. January, 1–13.




DOI: https://doi.org/10.30998/npjpe.v6i2.3406

Article Metrics

Abstract Views : 9

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Klarisa Yulia Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Department of Physics Education
Faculty of Mathematics and Sciences
Universitas Indraprasta PGRI

Address: Jl. Raya Tengah No. 80, Kel. Gedong, Kec. Pasar Rebo, Jakarta Timur 13760 , Jakarta, Indonesia. 
Phone: +62 (021) 7818718 – 78835283 | Close in sunday and public holidays in Indonesia
Work Hours: 09.00 AM – 08.00 PM
Best hours to visit: From 9 am to 11 am or after 3 pm. The busiest times are between 11 am and 3 pm. 

Creative Commons License
Navigation Physics: Journal of Physics Education is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License