Hamiltonian Penggerak Sistem Spin Dengan Lamor Frequency Menggunakan Metode Fast Forward & Shortcut to Adiabaticity
Klarisa Yulia Sari(1*), Iwan Setiawan(2), Desy Hanisa Putri(3),
(1) Universitas Bengkulu
(2) Universitas Bengkulu
(3) Universitas Bengkulu
(*) Corresponding Author
Abstract
This study looks at a number of sources that are pertinent to the research question and includes analytical computations. This study aims to compare two methods in accelerating adiabatic quantum dynamics, namely the Fast forward method and Shortcuts to Adiabaticity (STA), which have significant relevance in developing quantum technology, especially in applying imaging techniques such as NMR and MRI. The study examined how these two methods can accelerate quantum dynamics without changing the system's characteristics. This study examined a single spin system by involving a magnetic field with a Larmor Frequency referred to as the adiabatic state. The formulation of the problem raised includes determining the regularization term and comparing the additional Hamiltonian methods. The methodology used to obtain the regularization term with the parameterization of the magnetic field based on the frequency of the Larmor, as well as the analysis of the wave function solution and additional Hamiltonian. The results obtained from this study are regularization terms and additional Hamiltonian terms that can shorten the dynamics of the system in an adiabatic way.
Keywords
References
Ainayah, N., Setiawan, I., & Hamdani, D. (2022). Methods To Accelerate Equilibrium in Overdamped Brownian Motion. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 8(2), 212–225. http://doi.org/10.25273/jpfk.v8i2.13626
Aszhar, J., Setiawan, I., & Medriati, R. (n.d.). Method for accelerating equilibrium in perfectly damped Brownian motion motion with harmonic potential. Kasuari: Physics Education Journal (KPEJ), x.
Benggadinda, A., & Setiawan, I. (2021). Metoda Fast Forward Untuk Mempercepat Dinamika Kuantum Adiabatik Pada Spin Tunggal. JST (Jurnal Sains dan Teknologi), 10(2), 274–280. https://doi.org/10.23887/jstundiksha.v10i2.39876
Berry, M. V. (2009). Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical, 42(36). https://doi.org/10.1088/1751-8113/42/36/365303
Chen, X., & Muga, J. G. (2010). Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Physical Review A - Atomic, Molecular, and Optical Physics, 82(5), 1–7. https://doi.org/10.1103/PhysRevA.82.053403
Del Campo, A. (2013). Shortcuts to adiabaticity by counterdiabatic driving. Physical Review Letters, 111(10), 1–5. https://doi.org/10.1103/PhysRevLett.111.100502
Elisa, N., Setiawan, I., & Hamdani, D. (2022). Energi Penggerak untuk Mempercepat Kesetimbangan Gerak Brown Teredam Sebagian ( Underdamped ). jurnal inovasi dan pembelajaran fisika, 10(1), 21–33. https://doi.org/https://doi.org/10.36706/jipf.v10i1.19240
Guéry-Odelin, D., Ruschhaupt, A., Kiely, A., Torrontegui, E., Martínez-Garaot, S., & Muga, J. G. (2019). Shortcuts to adiabaticity: Concepts, methods, and applications. Reviews of Modern Physics, 91(4). https://doi.org/10.1103/RevModPhys.91.045001
Hutagalung, M., Setiawan, I., & Hamdani, D. (2023). Kajian Literatur Fase Adiabatik untuk Mempercepat dinamika Kuantum Adiabatik pada Osilator Harmonik. Indonesian Journal of Applied Physics (IJAP), 13(1), 106–116.
Khujakulov, A., & Nakamura, K. (2016). Scheme for accelerating quantum tunneling dynamics. Physical Review A, 93(2), 1–11. https://doi.org/10.1103/PhysRevA.93.022101
Kiselev, V. G. (2019). Larmor frequency in heterogeneous media. Journal of Magnetic Resonance, 299, 168–175. https://doi.org/10.1016/j.jmr.2018.12.008
Masuda, S, & Nakamura, K. (2022). Fast-forward scaling theory. Philosophical Transactions Royal Society A, 380(20210278). https://doi.org/https://doi.org/10.1098/rsta.2021.0278
Masuda, Shumpei, & Nakamura, K. (2009). Fast-forward of adiabatic dynamics in quantum mechanics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2116), 1135–1154. https://doi.org/10.1098/rspa.2009.0446
Nakamura, K., Khujakulov, A., Avazbaev, S., & Masuda, S. (2017). Fast forward of adiabatic control of tunneling states. Physical Review A, 95(6), 1–12. https://doi.org/10.1103/PhysRevA.95.062108
Patra, A., & Jarzynski, C. (2021). Semiclassical fast-forward shortcuts to adiabaticity. Physical Review Research, 3(1), 1–8. https://doi.org/10.1103/PhysRevResearch.3.013087
Pingak, R. K., Kolmate, R., & Bernandus, B. (2019). A Simple Matrix Approach to Determination of the Helium Atom Energies. Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 9(1), 10. https://doi.org/10.26740/jpfa.v9n1.p10-21
Restu, Saputra, M. I., Triyono, A., & Suwaji. (2021). Metode Penelitian. Depublish.
Rohayati, S., Setiawan, I., & Risdianto, E. (2023). Regularization Phase and Auxiliary Potential to MAintain Adiabatic Quantum Dynamics At Delta Function Potential. Jurnal Pendidikan Fisika dan Keilmuan (JPFK), 9(2), 87–113.
Setiawan, I. (2019). Dinamika Spin Kuantum Adiabatik Dipercepat Pada Model Landau-Zener Dan Model Ising. Jurnal Kumparan Fisika, 2(1), 57–64. https://doi.org/10.33369/jkf.2.1.57-64
Setiawan, I., Eka Gunara, B., Masuda, S., & Nakamura, K. (2017). Fast forward of the adiabatic spin dynamics of entangled states. Physical Review A, 96(5), 1–11. https://doi.org/10.1103/PhysRevA.96.052106
Setiawan, I., Ekawita, R., Sugihakim, R., & Gunara, B. E. (2023). Fast-forward adiabatic quantum dynamics of XY spin model on three spin system. Physica Scripta, 98(2), 1–13. https://doi.org/10.1088/1402-4896/acb2fe
Setiawan, I., Gunara, B. E., & Nakamura, K. (2019). Fast forward of adiabatic spin dynamics : An application to quantum annealing model in triangle spin systems. Journal of Physics: Conference Series, 1245(1), 1–9. https://doi.org/10.1088/1742-6596/1245/1/012077
Setiawan, I., Sugihakim, R., Gunara, B. E., Masuda, S., & Nakamura, K. (2023). Fast-forward generation of non-equilibrium steady states of a charged particle under the magnetic field. Progress of Theoretical and Experimental Physics, 2023(6), 1–12. https://doi.org/10.1093/ptep/ptad067
Syafitri, D., Setiawan, I., Studi, P., Fisika, P., & Bengkulu, U. (2023). Analisis Fase Tambahan , Potensial Tambahan , dan Rapat Arus Adiabatik Sistem Kuantum Dengan Potensial Tangga. Navigation Physics : Journal of Physics EducationSyafitri, D., Setiawan, I., Studi, P., Fisika, P., & Bengkulu, U. (2023). Analisis Fase Tambahan , Potensial Tambahan , dan Rapat Arus Adiabatik Sistem Kuantum Dengan Potensial Tangga. Navigation Physics : , 5(2), 66–76. https://doi.org/https://doi.org/10.30998/npjpe.v5i2.2367
Torrontegui, & Martínez-Garaot. (2012). Shortcuts to adiabaticity: fast-forward approach. 1, 1–7. https://doi.org/https://doi.org/10.1103/PhysRevA.86.013601
Wagner, E. P. (2014). Understanding Precessional Frequency , Spin-Lattice and Spin-Spin Interactions in Pulsed Nuclear Magnetic Resonance Spectroscopy. January, 1–13.DOI: https://doi.org/10.30998/npjpe.v6i2.3406
Article Metrics
Abstract Views : 9Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Klarisa Yulia Sari
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Department of Physics Education Faculty of Mathematics and Sciences Universitas Indraprasta PGRI Address: Jl. Raya Tengah No. 80, Kel. Gedong, Kec. Pasar Rebo, Jakarta Timur 13760 , Jakarta, Indonesia. |
|