Exploring The Potential of Laser Technology to Enhance The Performance of Renewable Energy Power Generation
Irwanuddin Irwanuddin(1), Syamsul Ma’arif(2*),
(1) Center for Nuclear Innovation and Renewable Energy Studies (PUSPINEBT), Indonesian Muslim Intellectual Association (ICMI),
(2) Universitas Sarjanawiyata Tamansiswa
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Aridito, M. N. & Ma’arif, S., 2019. Potensi Energi Listrik dari Sampah Berbasis Gasifikasi di Kawasan Village Center Bali. Prosiding Konferensi Nasional Engineering Perhotelan X, pp. 391-395.
Beenackers, A. A. C. M. & Maniatis, K., 1998. Gasification technologies for heat and power from biomass. Fuel and Energy Abstracts, 1(39), p. 36.
Borraccino, A., 2017. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing, DTU Wind Energy: s.n.
Bos, R., Giyanani, A. & Bierbooms, W., 2016. Assessing the severity of wind gusts with lidar. Remote Sensing, 8(9), p. 758.
Ciappi, A., Giorgetti, A., Ceccanti, F. & Canegallo, G., 2021. Technological and economical consideration for turbine blade tip restoration through metal deposition technologies. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(10), pp. 1741-1758.
Dahlquist, E., 2013. An overview of thermal biomass conversion technologies. Dalam: Technologies for Converting Biomass to Useful Energy. London: CRC Press, pp. 43-46.
Desta, D. et al., 2016. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance. Nanoscale, 8(23), pp. 12035-12046.
Dimitrov, N. et al., 2019. Wind turbine load validation using lidar‐based wind retrievals. Wind Energy, 22(11), pp. 1512-1533.
Gielen, D. et al., 2019. The role of renewable energy in the global energy transformation. Energy strategy reviews, Volume 24, pp. 38-50.
Goit, J. P., Shimada, S. & Kogaki, T., 2019. Can LiDARs replace meteorological masts in wind energy?. Energies, 12(19), p. 3680.
Gupta, M. C. & Carlson, D. E., 2015. Laser processing of materials for renewable energy applications. MRS Energy & Sustainability, Volume 2, p. E2.
Hwang, S., An, Y. K. & Sohn, H., 2017. Continuous line laser thermography for damage imaging of rotating wind turbine blades. Procedia Engineering, Volume 188, pp. 225-232.
Jaiswal, K. K. et al., 2022. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, Volume 7, p. 100118.
Khodasevych, I. E., Wang, L., Mitchell, A. & Rosengarten, G., 2015. Micro‐and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 3(7), pp. 852-881.
Li, J. & Yu, X. B., 2017. LiDAR technology for wind energy potential assessment: Demonstration and validation at a site around Lake Erie. Energy Conversion and Management, Volume 144, pp. 252-261.
Li, Z., Tokhi, M. O. & Zhao, Z., 2020. A compact laser shearography system integrated with robotic climber for on-site inspection of wind turbine blades. Moscow, Russian Federation, CLAWAR Association, pp. 212-219.
Li, Z., Tokhi, M. O., Zhao, Z. & Zheng, H., 2021. A compact laser shearography system for on-site robotic inspection of wind turbine blades. Journal of Artificial Intelligence and Technology, 1(3), pp. 166-173.
Ma’arif, S., 2019. Potensi Energi Listrik Hasil Gasifikasi Sampah Organik dari Wisatawan di Pantai Parangtritis. Prosiding Konferensi Nasional Engineering Perhotelan X, pp. 405-409.
Ma'arif, S., 2023. Pengembangan Sistem Teknologi Kerakyatan untuk Mendukung Ketahanan Energi Nasional. Dalam: Seabad Tamansiswa: Jejak Langkah Menghidupi Jiwa Merdeka dan Berkarakter. Yogyakarta: Penerbit Kepel Press, pp. 249-266
Aridito, M. N. & Ma’arif, S., 2019. Potensi Energi Listrik dari Sampah Berbasis Gasifikasi di Kawasan Village Center Bali. Prosiding Konferensi Nasional Engineering Perhotelan X, pp. 391-395.
Beenackers, A. A. C. M. & Maniatis, K., 1998. Gasification technologies for heat and power from biomass. Fuel and Energy Abstracts, 1(39), p. 36.
Borraccino, A., 2017. Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing, DTU Wind Energy: s.n.
Bos, R., Giyanani, A. & Bierbooms, W., 2016. Assessing the severity of wind gusts with lidar. Remote Sensing, 8(9), p. 758.
Ciappi, A., Giorgetti, A., Ceccanti, F. & Canegallo, G., 2021. Technological and economical consideration for turbine blade tip restoration through metal deposition technologies. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(10), pp. 1741-1758.
Dahlquist, E., 2013. An overview of thermal biomass conversion technologies. Dalam: Technologies for Converting Biomass to Useful Energy. London: CRC Press, pp. 43-46.
Desta, D. et al., 2016. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance. Nanoscale, 8(23), pp. 12035-12046.
Dimitrov, N. et al., 2019. Wind turbine load validation using lidar‐based wind retrievals. Wind Energy, 22(11), pp. 1512-1533.
Gielen, D. et al., 2019. The role of renewable energy in the global energy transformation. Energy strategy reviews, Volume 24, pp. 38-50.
Goit, J. P., Shimada, S. & Kogaki, T., 2019. Can LiDARs replace meteorological masts in wind energy?. Energies, 12(19), p. 3680.
Gupta, M. C. & Carlson, D. E., 2015. Laser processing of materials for renewable energy applications. MRS Energy & Sustainability, Volume 2, p. E2.
Hwang, S., An, Y. K. & Sohn, H., 2017. Continuous line laser thermography for damage imaging of rotating wind turbine blades. Procedia Engineering, Volume 188, pp. 225-232.
Jaiswal, K. K. et al., 2022. Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, Volume 7, p. 100118.
Khodasevych, I. E., Wang, L., Mitchell, A. & Rosengarten, G., 2015. Micro‐and nanostructured surfaces for selective solar absorption. Advanced Optical Materials, 3(7), pp. 852-881.
Li, J. & Yu, X. B., 2017. LiDAR technology for wind energy potential assessment: Demonstration and validation at a site around Lake Erie. Energy Conversion and Management, Volume 144, pp. 252-261.
Li, Z., Tokhi, M. O. & Zhao, Z., 2020. A compact laser shearography system integrated with robotic climber for on-site inspection of wind turbine blades. Moscow, Russian Federation, CLAWAR Association, pp. 212-219.
Li, Z., Tokhi, M. O., Zhao, Z. & Zheng, H., 2021. A compact laser shearography system for on-site robotic inspection of wind turbine blades. Journal of Artificial Intelligence and Technology, 1(3), pp. 166-173.
Ma’arif, S., 2019. Potensi Energi Listrik Hasil Gasifikasi Sampah Organik dari Wisatawan di Pantai Parangtritis. Prosiding Konferensi Nasional Engineering Perhotelan X, pp. 405-409.
Ma'arif, S., 2023. Pengembangan Sistem Teknologi Kerakyatan untuk Mendukung Ketahanan Energi Nasional. Dalam: Seabad Tamansiswa: Jejak Langkah Menghidupi Jiwa Merdeka dan Berkarakter. Yogyakarta: Penerbit Kepel Press, pp. 249-266.
Ma'arif, S., Sari, R. J. & Syamsiro, M., 2016. Studi Kelayakan Ekonomi Pembangunan PLTD Sistem Dual Fuel dengan Gasifikasi Sekam Padi Kapasitas 50 kVA. Jurnal Mekanika dan Sistem Termal, 1(1), pp. 26-31.
Ma'arif, S. & Wardoyo, W., 2020. Potential of Electric Energy from Waste in Kaliurang Tourism Area, Sleman, Special Region of Yogyakarta. Conserve: Journal of Energy and Environmental Studies, 4(1), pp. 1-8.
Ma'arif, S. et al., 2019. Waste-to-Energy Development Using Organic Waste Recycling System (OWRS): A Study Case of Giwangan Market. International Journal of Renewable Energy Research (IJRER), 9(1), pp. 354-362.
Nedelcu, D., Gillich, G. R., Gerocs, A. & Padurean, I., 2020. A comparative study between photogrammetry and laser technology applied on model turbine blades. Hunedoara, Romania, IOP Publishing, p. 012026.
Peharz, G., Kuna, L. & Leiner, C., 2015. Laser-assisted manufacturing of micro-optical volume elements for enhancing the amount of light absorbed by solar cells in photovoltaic modules. s.l., SPIE, pp. 231-240.
Pupo-Roncallo, O. et al., 2019. Large scale integration of renewable energy sources (RES) in the future Colombian energy system. Energy, Volume 186, p. 115805.
Scholbrock, A. et al., 2016. Lidar-enhanced wind turbine control: Past, present, and future. Boston, MA, USA, IEEE, pp. 1399-1406.
Schuerhoff, J., Ghicov, A. & Sattler, K., 2015. Advanced water droplet erosion protection for modern low pressure steam turbine steel blades. Montreal, Quebec, Canada, American Society of Mechanical, p. V008T26A026.
Syamsiro, M., Aridito, M. N. & Ma'arif, S., 2020. Potential Application of Sago Pulp Briquette for Electricity Generation Using Gasification Technology in Papua Province, Indonesia. Key Engineering Materials, Volume 849, pp. 20-26.
Tursunov, O. & Dobrowolski, J. W., 2015. A brief review of application of laser biotechnology as an efficient mechanism for the increase of biomass for bio-energy production via clean thermo-technologies. American Journal of Renewable and Sustainable Energy, 1(2), pp. 66-71.
Viljanen, J., 2019. Online Laser Diagnostics for High-Temperature Chemistry in Biomass Combustion, Tampere, Finland: Tampere University.
Wang, H. et al., 2023. Application of Lidar in Comparison of Wind Speed and Wind Direction Meters in Wind Power Field. s.l., EDP Sciences, p. 02004.
Wang, L., Weller, C. L., Jones, D. D. & Hanna, M. A., 2008. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass and bioenergy, 32(7), pp. 573-581.
Zhang, Y. et al., 2020. Improved measurement in quantitative analysis of coal properties using laser induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 35(4), pp. 810-818.
DOI: https://doi.org/10.30998/.v2i1.2078
Article Metrics
Abstract Views : 357 | PDF Views : 384Refbacks
- There are currently no refbacks.