Model Panen Air Hujan untuk Penanggulangan Banjir; Studi Kasus di Kawasan Sentul City-Bogor, Indonesia



Asep Suheri(1*), Edward Alfin(2), Rahmatulloh Rahmatulloh(3),

(1) Institut Teknologi Bandung
(2) Universitas Indraprasta PGRI
(3) Universitas Indraprasta PGRI
(*) Corresponding Author

Abstract


The aim of the study was to determine the volume of rainwater harvesting (RWH) and its relationship to the Bekasi flood. The case study was conducted in the Sentul City (SC) area, which is the upstream of the Bekasi Watershed (DAS), while in the lower reaches of the watershed, the Bekasi area is often affected by flooding. The data needed in this study are population, population growth, daily rainfall data, and water needs. The method for determining the existing rainwater catchment area is through analysis of SPOT-2017 imagery. It is assumed that urban and rural water needs are 120 liters/day and 60 liters/day respectively, while non-domestic needs are 35% from domestic (Directorate General of Human Settlements, 1998). Determine the RWH volume with the formulation: RWH = 0.8 x A x Ch (where: RWH = daily harvestable rainwater volume (m3); 0.8 = correction factor, after evaporation and infiltration; A = Rainwater catchment area (m2), and Ch = daily rainfall (mm)). The results of the 2017 SPOT image analysis obtained that the existing residential area of SC urban is 7,054,700 m2 and rural is 2,250,700 m2. The prediction of the average daily need for clean water in the SC area in 2018 is 14,619 m3/day. The potential for rainwater that can be harvested with scenario-1 is 6,061,538 m3/year and with scenario-2 is 12,123,075 m3/year. Scenario-1 can meet water needs until 2026, and scenario-2 until 2050. Implementation of RWH in SC can increase the supply of raw water, reduce clean water supply from PDAM, reduce runoff, reduce the frequency of flooding events and cope with flooding in the area. Bekasi.


Full Text:

PDF

References


Alfin E, Purwanto MYJ, Arifin HS, Saptomo SK. 2021. Ketahanan Air di Masa Pandemi di Sentul City. Journal of Academia Perspective, Vol 1 No 2 September 2021.

[BIG] Badan Informasi Geospasial. 2019. Peta Penggunaan Lahan Kabupaten Bogor. Cibinong

[BPS] Badan Pusat Statistik. 2019. Kabupaten Bogor Dalam Angka. Bogor.

Chandra B. 2007. Pengantar Kesehatan Lingkungan. Jakarta : Penerbit Buku Kedokteran EGC.

Direktorat Jenderal Cipta Karya Departemen Pekerjaan Umum (1998). Tata Cara Survei dan Pengkajian Kebutuhan dan Pelayanan Air Minum. Jakarta.

Direktorat Jenderal Cipta Karya Departemen Pekerjaan Umum (1998). Tata Cara Penyusunan Rencana Induk Air Bersih Perkotaan. Jakarta.

Fewkes, A (2014). The Verification. of a Behavioral Model for Simulating the Hydrologic Perform. of Rainwat. Harves. Sys.

Frasier, Gary and Myers, The Handbook Of Water Harvesting (1983). US Department of Agriculture, Washington DC.

Helmreich, B., & Horn, H (2008). Opportunities in rainwater harvesting. Desalination. Vol.248:118-124.

Juliana, IC., Kusuma, MSB., Cahyono, M., Martokusumo, W., & Kuntoro, AA (2017). The effect of differences rainfall data duration and time period in the assessment of rainwater harvesting system performance for domestic water use, AIP Conference Proceedings. 1903, 100006; https://doi.org/10.1063/1.5011616.

Khaeruddin, DN., Proborini, WD., & Pandulu, GD (2013). Efisiensi Pembangunan Penampungan Air Hujan Terhadap Pemanfaatan Air Komersil dan Drainase Pada Rumah Toko, Apartemen dan Gedung di kota Malang. Teknik Sipil. Universitas Negeri Malang

[LAN] Lembaga Antariksa Nasional. 2019. Data Citra SPOT-6 Tahun 2018. Stasiun Klimatologi Citeko Bogor.

Lee, JY., Bak, G., & Han, M (2012). Quality of roof-harvested rainwater : comparison of different roofing materials, Environmental Pollution, 162, 2012, pp. 422-429, UK

Mariana C. M. dkk. 2006. Perancangan Sistem Pengolahan Air Hujan Dengan Menggunakan Teknologi Membran Dan Lampu Ultraviolet Serta Penerapannya Dalam Kehidupan Sehari-Hari. Departemen Fisika. Institut Pertanian Bogor.

McBroom, MW., & Beasley, RS (2004). Roofing as a source of nonpoint water pollution. Jurnal of Environmental Management. Vol.73: 307-315.

Nazharia,C. dan Maryati,S. 2011. Perencanaan Sistem Pengolahan Air Hujan Dengan Menggunakan Teknologi Membran dan Lampu Ultraviolet Serta Penerapannya Dalam Kehidupan Sehari-hari. Jurnal Perencanaan Wilayah dan Kota B SAPPK V2N1. Institut Pertanian Bogor.Waskom R. dan Kallenberger J. (2014)

Simmons, G., Hope, V., Lewis, G., Whitmore, J., & Gao, W (2000). Contamination of potable roof-collected rainwater in Auckland, New Zealand, Water Resources, 35 (6), 1518–1524

Soewarno (1995). Hidrologi Aplikasi Metode Statistik Untuk Analisa Data Jilid 1. Penerbit: Nova, Bandung.

Suheri, A ., Kusmana, C., Purwanto MYJ., & Setiawan, Y (2019). The peak runoff model based on Existing Land Use and Masterplan in Sentul City area, Bogor. IOP Conference Series: Earth and Environmental Science. 399. 012039. 10.1088/1755-1315/399/1/012039.

Suheri, A; Kusmana, C; Purwanto, MYJ; & Setiawan, Y (2018). A Model for Predicting Clean Water Need Base on Inhabitant Number in The Urban Area Sentul City. Jurnal Teknik Sipil dan Lingkungan, Vol. 04 No. 03, Desember 2019.

Susianah T. dan Masduqi A. 2011. Air Hujan Sebagai Alternatif Pemenuhan Kebutuhan Air Minum Di Kecamatan Ranuyoso Kabupaten Lumajang. Teknik Lingkungan. Institut Teknologi Surabaya.

Waskom R. and Kallenberger J. 2014. Graywater Reuse and Rainwater Harvesting. Colorado Water Institute Fact Sheet No.6.702 Revised 12/14. Colorado state university.


Article Metrics

Abstract Views : 282 | PDF Views : 263

Refbacks

  • There are currently no refbacks.