Analisis Dinamika Atmosfer Saat Peristiwa Siklon Tropis Paddy di Pulau Jawa
Fadhil Muhammad Aslam(1*),
(1) Sekolah Tinggi Meteorologi Klimatologi dan Geofisika
(*) Corresponding Author
Abstract
Java Island is the most densely populated island in Indonesia. Consequently, Java Island is also prone to atmospheric disturbances that affect the activities of its inhabitants. One such event was Tropical Cyclone Paddy, which occurred from November 22 to 24, 2021. The aim of this study is to understand and delve into the analysis of atmospheric dynamics during the Tropical Cyclone Paddy event, which subsequently impacts the lives and activities of the people on Java Island. This study utilizes data from various meteorological parameters such as rainfall, zonal and meridional winds, sea surface temperature (SST), humidity, and pressure collected from several sources, namely: Himawari-8 Satellite, GsMap, ECMWF Era 5 hourly data on pressure levels, and NOAA. The research examines the dynamics of sea surface temperature (SST) anomalies, wind patterns, lower-level moisture transport (LLMT), divergence, surface pressure, and rainfall during the Tropical Cyclone Paddy event. Software such as GrADS 2.2 and Python were used for spatial analysis. The analysis indicates that high SST anomalies, convergence, and high LLMT contributed to the formation of convective clouds, ultimately resulting in high rainfall in the southern regions of Java affected by the cyclone. Over time, there was a decline in these phenomena, marked by a decrease in pressure, wind speed, and rainfall, leading to the normalization of weather conditions in Java Island post-cyclone.
Keywords
Full Text:
PDFReferences
Aguado, E., & E. Burt, J. (2001). Understanding weather and climate. Upper Saddle River.
Atmo 336. (n.d.). Severe Weather. http://www.atmo.arizona.edu/students/courselinks/fall10/atmo336/lectures/sec2/hurricanes.html
Badan Informasi Geospasial. (n.d.). Ina Geoportal. https://www.big.go.id/content/produk/ina-geoportal
BMKG. (2024a). GSMaP Rainrate Daily - Indonesia. https://www.bmkg.go.id/satelit/satelit.bmkg?Sat=12&id=0
BMKG. (2024b). Informasi Siklon Tropis. https://maritim.bmkg.go.id/info/39/Informasi-Siklon-Tropis#:~:text=Masa hidup suatu siklon tropis,yang dingin atau memasuki daratan.
BPS. (2023). Jumlah Penduduk Pertengahan Tahun (Ribu Jiwa), 1960 - 2023. https://www.bps.go.id/id
Camargo, S. J., & Sobel, A. H. (2005). Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18(15). https://doi.org/10.1175/JCLI3457.1
Du, Y., Yang, L., & Xie, S. P. (2011). Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño. Journal of Climate, 24(1), 315–322. https://doi.org/10.1175/2010JCLI3890.1
ECMWF. (2024). ERA5 monthly averaged data on single levels from 1940 to present. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
Galarneau, T. J., Bosart, L. F., & Schumacher, R. S. (2010). Predecessor rain events ahead of tropical cyclones. Monthly Weather Review, 138(8), 3272–3297. https://doi.org/10.1175/2010MWR3243.1
Golden Gate Weather Services. (n.d.). El Niño and La Niña Years and Intensities. https://ggweather.com/enso/oni.htm
Huo, L., Guo, P., Hameed, S. N., & Jin, D. (2015). The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophysical Research Letters, 42(7), 2378–2384. https://doi.org/10.1002/2015GL063184
JMA. (2024). Meteorological Satellite Center of JMA. https://www.data.jma.go.jp/mscweb/en/index.html
Lainata, R. G., Tinggi, S., & Klimatologi, M. (2016). KAJIAN KONDISI PERTUMBUHAN AWAN DAN CURAH HUJAN PADA SAAT HUJAN LEBAT MENGGUNAKAN SATELIT MTSAT DAN GSMAP (Studi Kasus Banjir di Seram Utara Tanggal 21 Februari 2015). 1–10.
Michael, P. (2010). El Niño, La Niña and the southern oscillation. In Encyclopedia of Earth. Environmental Information Coalition, National Council for Science and the Environment.
NASA. (n.d.). World of Change: El Niño, La Niña, and Rainfall. https://earthobservatory.nasa.gov/world-of-change/ENSO
NOAA. (2024). NOAA OI SST V2 High Resolution Dataset. National Oceanic And Atmospheric Administration. https://psl.noaa.gov/mddb2/makePlot.html?variableID=4113
Soerjadi, W. (2006). Meteorologi Praktik. Badan Meteorologi dan Geofisika.
Tjasyono, B. (2006). Meteorologi Indonesia Volume I Karakteristik dan Sirkulasi Atmosfer. Badan Meteorologi dan Geofisika.
Tjasyono, B. (2007). METEOROLOGY OF THE INDONESIAN MARITIME CONTINENT. Badan Meteorologi dan Geofisika.
Wing, A. A., Sobel, A. H., & Camargo, S. J. (2007). Relationship between the potential and actual intensities of tropical cyclones on interannual time scales. Geophysical Research Letters, 34(8). https://doi.org/10.1029/2006GL028581
Yu, J., Gao, S., Zhang, L., Shen, X., & Guo, L. (2020). Analysis of a remote rainstorm in the yangtze river delta region caused by typhoon mangkhut (2018). Journal of Marine Science and Engineering, 8(5). https://doi.org/10.3390/JMSE8050345
Zakir, A. (2006a). Badai Angin.
Zakir, A. (2006b). Badai dan Pengaruhnya Terhadap Cuaca Buruk di Indonesia. Badan Meteorologi dan Geofisika.
Zakir, A. (2006c). Kajian Siklon Tropis. Badan Meteorologi dan Geofisika.
Zakir, A. (2010). Perspektif Operasional Cuaca Tropis. Badan Meteorologi Klimatologi dan Geofisika.
Zakir, A. (2017). Profil Vertikal Suhu, Indeks Labilitas, Vertikal Wind Shear Selama Siklon Tropis Bakung Di Stamet Cengkareng, Padang Dan Pangkal Pinang. Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, 1–15.
DOI: https://doi.org/10.30998/npjpe.v6i2.2743
Article Metrics
Abstract Views : 53 | PDF Views : 14Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Fadhil Muhammad Aslam
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Department of Physics Education Faculty of Mathematics and Sciences Universitas Indraprasta PGRI Address: Jl. Raya Tengah No. 80, Kel. Gedong, Kec. Pasar Rebo, Jakarta Timur 13760 , Jakarta, Indonesia. |
|