LITERASI RINGKAS DATA MINING



AKHMAD ARIS TANTOWI(1*),

(1) Imam Unindra
(*) Corresponding Author

Abstract


Abstract

Data mining is a component of business intelligence, which is useful in making decisions. Decision making carried out by management is an important activity in taking strategic steps for the continuity of an organization. Here, Data Mining plays an active role in filtering, retrieving data and sorting the right data for the decision making process. Because with data mining we get interesting patterns that can be found in knowledge based. Knowledge based is what will later be used as a basis for knowledge presentation. To choose the right Data Mining method based on the raw data obtained (raw data). Methods that are often used in the data mining process include: classification, cluster and association. Although it does not rule out other types of methods, because it must be adjusted to what data sources and fields, as well as data users. Each type of method has its own advantages and disadvantages, so that in applying these methods a combination of several methods can be carried out, so that it will complement each other. With the combination of several methods, more complete result data will be obtained as expected. In data retrieval and processing, it is preferable to assist with tools for data mining, because it speeds up performance. But if these tools are not yet available, at least you have to use the existing stages of Data Mining, making the decision making process easier. Making decisions that will determine the next steps and will have an impact on good results.

Abstrak

Data Mining adalah salah satu komponen bussiness intellegence, yang berguna dalam pengambilan keputusan. Pengambilan keputusan yang dilakukan oleh manajemen merupakan kegiatan penting dalam mengambil langkah strategis bagi kelangsungan suatu organisasi. Disini, Data Mining berperan aktif untuk memfilter, mengambil data serta mensortir data yang tepat untuk proses pengambilan keputusan.  Karena dengan Data Mining diperoleh pola (pattern) menarik yang dapat ditemukan dalam knowledge based. Knowledge based inilah yang nantinya akan dijadikan dasar dalam presentasi pengetahuan (knowledge presentation). Untuk harus dipilih metode Data Mining yang tepat berdasarkan data mentah yang diperoleh (raw data). Metode yang sering digunakan dalam proses Data Mining antara lain : Classification, cluster dan association. Meskipun tidak menutup kemungkinan jenis metode yang lain, karena harus disesuaikan sumber data seperti apa dan bidang apa, serta pengguna data. Setiap jenis metode mempunyai kelebihan dan kekurangan masing-masing, sehingga dalam penerapan metode tersebut dapat dilakukan kombinasi antara beberapa metode, sehingga akan melengkapi antara satu dengan lainnya.Dengan adanya kombinasi beberapa metode akan didapatkan result data yang lebih lengkap sesuai yang diharapkan. Dalam pengambilan dan pengolahan data, sebaiknya dibantu dengan tools untuk data mining, karena mempercepat kinerja.Tapi jika belum tersedia tools tersebut, minimal harus menggunakan tahapan yang ada Data Mining, sehingga memudahkan proses pengambilan keputusan. Pengambilan keputusan yang akan menentukan langkah selanjutnya dan akan berdampak pada hasil yang baik.

 


Keywords


data mining, classification,cluster,tools



DOI: https://doi.org/10.30998/jap.v1i1.457

Article Metrics

Abstract Views : 327

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 AKHMAD ARIS TANTOWI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM)
Universitas Indraprasta PGRI

Address: Kampus A Building 3, 2nd Floor | Jl. Nangka No. 58 C (TB. Simatupang), Kel. Tanjung Barat, Kec. Jagakarsa, Jakarta Selatan 12530, Jakarta, Indonesia. 
Phone: +62 (021) 7818718 – 78835283 | Close in sunday and public holidays in Indonesia
Work Hours: 09.00 AM – 08.00 PM
Best hours to visit: From 9 am to 11 am or after 3 pm. The busiest times are between 11 am and 3 pm. 
 

 Creative Commons License
Journal of Academia Perspectives is licensed under a Creative Commons Attribution 4.0 International License.