Algoritma Robust Kalman Filtering untuk Sistem Waktu Kontinu yang Tidak Pasti
Budi Rudianto(1*), Muhafzan Muhafzan(2), Mahdivan Syafwann(3), Syafrizal Sy(4),
(1) Departemen Matematika dan Sains Data Universitas Andalas
(2) 
(3) 
(4) 
(*) Corresponding Author
Abstract
Full Text:
PDFReferences
Chukhrova, N., & Johannssen, A. (2021). Kalman filter learning algorithms and state space representations for stochastic claims reserving. Risks, 9(6). https://doi.org/10.3390/risks9060112 Daid, A., Busvelle, E., & Aidene, M. (2021). On the convergence of the unscented Kalman filter. European Journal of Control, 57. https://doi.org/10.1016/j.ejcon.2020.05.003 Ghion, D., & Zorzi, M. (2022). Distributed Kalman filtering with event-Triggered communication: A robust approach. 2022 30th Mediterranean Conference on Control and Automation, MED 2022, 1, 785–790. https://doi.org/10.1109/MED54222.2022.9837137 Han, T., Gois, F. N. B., Oliveira, R., Prates, L. R., & Porto, M. M. de A. (2023). Modeling the progression of COVID-19 deaths using Kalman Filter and AutoML. Soft Computing, 27(6). https://doi.org/10.1007/s00500-020-05503-5 Hao, N., He, F., Tian, C., Yao, Y., & Xia, W. (2023). KD-EKF: A Consistent Cooperative Localization Estimator Based on Kalman Decomposition. IEEE International Conference on Intelligent Robots and Systems, Cl, 11064–11070. https://doi.org/10.1109/IROS55552.2023.10341604 Kim, S., Deshpande, V. M., & Bhattacharya, R. (2021). Robust Kalman Filtering with Probabilistic Uncertainty in System Parameters. IEEE Control Systems Letters, 5(1), 295–300. https://doi.org/10.1109/LCSYS.2020.3001490 Liu, B. (2010). Uncertain Set Theory and Uncertain Inference Rule with Application to Uncertain Control. Online, 4(2), 83–98. Liu, Z., Chen, Y., & Lu, Y. (2022). Mid-State Kalman Filter for Nonlinear Problems. Sensors, 22(4). https://doi.org/10.3390/s22041302 Mary, A. H., Miry, A. H., & Miry, M. H. (2021). System uncertainties estimation based adaptive robust backstepping control for DC DC buck converter. International Journal of Electrical and Computer Engineering, 11(1), 347–355. https://doi.org/10.11591/ijece.v11i1.pp347-355 Meyer, G. P. (2021). An Alternative Probabilistic Interpretation of the Huber Loss. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Section 2, 5257–5265. https://doi.org/10.1109/CVPR46437.2021.00522 Wang, R., Becker, D., & Hobiger, T. (2023). Stochastic modeling with robust Kalman filter for real-time kinematic GPS single-frequency positioning. GPS Solutions, 27(3), 1–17. https://doi.org/10.1007/s10291-023-01479-5 Yi, S., & Zorzi, M. (2022). Robust Kalman Filtering Under Model Uncertainty: The Case of Degenerate Densities. IEEE Transactions on Automatic Control, 67(7), 3458–3471. https://doi.org/10.1109/TAC.2021.3106861
DOI: https://doi.org/10.30998/.v3i1.3045
Article Metrics
Abstract Views : 173 | PDF Views : 52Refbacks
- There are currently no refbacks.