
Navigation Physics: Journal of Physics Education 

Vol. 7, No. 1, June 2025 

E-ISSN: 2722-5593  

 

Modelling the Tunneling in 1D Schrodinger Equation Using Graphical 

User Interface 
 
 

Alpi Mahisha Nugraha1 and Nurullaeli1 
1Department of Informatics Engineering, Universitas Indraprasta PGRI, Jakarta, Indonesia 

 

 

 

Abstract 

 

Quantum tunneling is a phenomenon where particles have a probability of penetrating a potential barrier despite 

having total energy llower than the barrier height. This study analyzes the tunneling effect by solving the one-

dimensional (1D) Schrodinger equation using the finite difference method to obtain the wave function evolution 

for various potential barrier configurations. The solution is implemented in a Graphical User Interface (GUI) 

MATLAB to facilitate analysis and visualization, allowing users to interactively adjust potential parameters, 

energy, and other conditions. Simualation results demonstratehow transmission probability depends on energy, 

height and width of potential barrier. This GUI provides an intiuitive tool for exploring quantun tunneling, making 

it valuable for both education and research in quantum physics.  
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1. INTRODUCTION 

 

Despite its central role in quantum mechanics, the Schrödinger equation remains difficult for 

many students to grasp due to its abstract mathematical structure and the non-intuitive nature of the 

quantum phenomena it describes. This ongoing challenge underscores the importance of developing 

more accessible and engaging learning tools that can bridge conceptual understanding with 

visualization. To contextualize this need, it is helpful to reflect on the intellectual foundations of 

quantum theory. The 19th century often regarded as the golden age of physics was a period marked by 

profound theoretical advancements that reshaped our understanding of nature at atomic and subatomic 

scales. Among these developments was the emergence of wave particle duality, a revolutionary concept 

that challenged classical mechanics and paved the way for the formulation of the Schrödinger equation. 

Recognizing this historical trajectory emphasizes not only the significance of the equation itself but 

also the necessity of innovative educational approaches to make its implications more accessible to 

learners. In its one-dimensional form, depending only on position x, the Schrödinger equation is 

expressed as: 

 −
ℏ2

2𝑚
∇2𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)    (i) 

with  

ℏ as the reduction of planck constant ℏ = ℎ/2𝜋, 

m as mass of particle, 

∇2 as the Laplace operator representing the kinetic energy of a particle with mass m, 

𝜓(𝑥) as a wave function that contains probabilistic information about the system, 
𝑉(𝑥) as a potential energy that is a function of position,  

and E is the eigenvalue that represents the energy level of the system.  
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The Schrödinger equation plays a central role in describing the behavior of particles. It encodes 

the probability distribution for locating a particle at a given position or time, allows for the analysis of 

quantum superposition where a particle can exist in a combination of states simultaneously and 

captures other fundamental quantum effects. Typically, this equation is introduced in greater detail at 

the university level, particularly in physics or applied physics programs. Despite its wide-ranging 

applications, especially in advancing modern technology, many students still find it one of the more 

difficult and daunting topics in their studies. 

The modeling of the Schrödinger equation is typically introduced in quantum physics courses, 

where students are often challenged by its abstract formalism and the non-intuitive behavior it 

describes. To address this, various instructional modules have been developed to enhance engagement 

and conceptual clarity. Tools such as the 3D PageFlip electronic module (Yuli Yanti et al., 2017), 

supersymmetry-based energy spectrum visualizations (Saregar, 2015), virtual laboratories (Manurung 

et al., 2018), and interactive simulations using Macromedia Flash MX (Yuliani, 2017) have 

demonstrated potential in making quantum concepts more approachable. These tools are particularly 

valuable in visualizing phenomena that lack classical analogs, such as quantum tunneling, by providing 

students with graphical representations that bridge the gap between mathematical formalism and 

physical intuition. 

However, many of these approaches offer limited interactivity or rely on predefined content, 

restricting learners’ ability to explore parameter-dependent behavior dynamically. In contrast, GUI-

based tools such as those built using MATLAB’s Graphical User Interface offer a more flexible and 

responsive environment where users can manipulate potential barriers, energy levels, and other 

variables in real time. This interactivity is especially advantageous for helping students conceptualize 

quantum tunneling, where the probabilistic penetration of particles through potential barriers defies 

classical expectations. By visualizing the wavefunction’s behavior under different scenarios, students 

are more likely to develop an intuitive grasp of the underlying physics. Accordingly, this study 

proposes the development of a GUI-based numerical solver for the Schrödinger equation as a 

pedagogical tool designed to enhance both engagement and conceptual understanding in quantum 

physics instruction. 

Solving the Schrödinger equation is by no means a new endeavor. Some approaches rely on 

analytical methods to determine the corresponding wave functions (Dinnullah, 2015), and in certain 

cases, the equation has been applied to calculate the classical mass of stable nonlinear waves, known 

as solitons, that propagate without changing shape due to a balance between dispersion and nonlinearity 

in the medium (Prayitno, 2011). However, analytical solutions are often mathematically complex, 

making it difficult for students to grasp both the solutions and the physical meaning underlying the 

Schrödinger equation. 

 

2. METHODS 

  

The Schrödinger equation can be solved analytically in one dimension (1D), two dimensions (2D) 

(Supriadi et al., 2017), or in both space and time domains. However, analytical solutions become 

increasingly difficult to obtain as the modeled system grows more complex. In this study, the 

Schrödinger equation is solved using a numerical approach rather than an analytical one The finite 

difference method is used to discretize the one-dimensional Schrödinger equation as presented in 

Equation (i). The second derivative, in this context, can be approximated numerically as follows:  

                                          
𝑑2𝜓

𝑑𝑥2
 ≈  

𝜓𝑖+1−2𝜓𝑖+𝜓𝑖−1

Δ𝑥2
                     (ii) 

here Δ𝑥 =  𝑥𝑖+1 − 𝑥𝑖 and 𝑖 denotes the index corresponding to discrete spatial positions. Based on this 

discretization, the time-independent Schrödinger equation can be expressed numerically as follows: 

−
ℏ2

2𝑚Δ𝑥2
𝜓𝑖−1 + (

ℏ2

2𝑚Δ𝑥2
+ 𝑉𝑖)𝜓𝑖 −

ℏ2

2𝑚Δ𝑥2
𝜓𝑖+1 = 𝐸𝜓𝑖              (iii) 

or it can be formulated in matrix form as follows: 
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(

 
 

𝑎1 𝑏 0
𝑏 𝑎2 𝑏
0
⋮
0

𝑏
⋮
0

𝑎3
⋮
0

 … 0
 … 0
 
 
 

… 0
⋱ ⋮
𝑏 𝑎𝑁)

 
 

(

 
 

𝜓1
𝜓2
𝜓3
⋮
𝜓𝑁)

 
 
= 𝐸

(

 
 

𝜓1
𝜓2
𝜓3
⋮
𝜓𝑁)

 
 

 

 

with: 𝑏 =  
ℏ2

2𝑚Δ𝑥2
 and 𝑎𝑖 = 

ℏ2

2𝑚Δ𝑥2
+ 𝑉𝑖(𝑥). N represents the number of iterations performed in solving 

the matrix form of the equation. The solution must satisfy the normalization condition, meaning that 

the total probability of the wavefunction must equal one, expressed as∫|𝜓𝑖(𝑥)|
2 𝑑𝑥 = 1.  

The numerical solution is presented through a MATLAB based Graphical User Interface (GUI), 

designed to assist students in understanding the Schrödinger equation particularly in illustrating 

quantum tunneling phenomena. In the designed GUI, users are required to input several parameters: the 

value of X, representing the length of the dimension; the energy and potential values in electron volts 

(eV); the width of the potential barrier; and the number of iterations used to sample the X values. The 

GUI then calculates and displays the transmission coefficient, which indicates the likelihood of the 

wave passing through the potential barrier. Additionally, the GUI generates a graph of the wave function 

𝜓(𝑥) versus position x, along with its behavior relative to the energy and potential profiles, based on 

the input potential barrier width. 

The workflow of the designed GUI is illustrated in Fig. 1. This study uses MATLAB as the 

programming language because it is both practical and powerful for solving equations using numerical 

methods. Moreover, the GUI is designed to remain user-friendly, ensuring that both students and 

learners can easily operate the 1D Schrödinger equation GUI developed in this work. 

3. RESULT AND DISCUSSION 

 

The Schrödinger equation offers a fascinating framework for physical modeling, particularly 

because it enables the explanation of phenomena that are difficult to describe macroscopically but can 

be understood at the microscopic level. This equation can be solved analytically, numerically, or 

through a combination of both methods, each with its own advantages and limitations. Numerical 

approaches have been employed to make the physical phenomena described by the Schrödinger 

equation more accessible and easier to visualize. Examples include numerical solutions involving non-

central Coulombic Rosen-Morse potentials (Yanuarief & Al-Faruq, 2019), the calculation of electron 

energy eigenvalues in finite potential wells (Luba et al., 2021), and the Dirac particle in a dynamic 

potential well (Tiandho, 2016). However, these solutions are often limited to numerical simulations, 

making them less accessible to students and learners who may not have the tools or background to 

engage with such material directly. 

Figure 1. Research Workflow 
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One accessible medium for students is the use of a Graphical User Interface (GUI) as an alternative 

learning tool. In addition to its visually appealing layout, the interface is user-friendly, making it easy 

to compute solutions to the Schrödinger equation. In this study, the GUI is designed with an initial 

interface as shown in Figure 2. Users, whether students or university learners, are only required to 

input values based on the conditions they wish to explore, particularly to observe the tunneling 

phenomenon. The required inputs include the value of X, representing the position range over which 

the wave function is analyzed; the number of iterations, which determines the resolution of the wave 

function the more iterations, the smoother the result; the energy value, or eigenvalue of the wave 

function, in electron volts (eV); the potential barrier, also in eV, which represents the obstacle the wave 

must overcome; and the width of the potential barrier, which influences how much of the wave is able 

to tunnel through. 

 

The output of the designed GUI is shown in Figures 3, 4, and 5. In addition to displaying the 

transmission coefficient which indicates the likelihood of a wave undergoing tunneling the GUI also 

presents the wave function profile as a function of position x. In Figure 3 (left), with input parameters 

x = 5, 500 iterations, energy of 1 eV, potential of 1 eV, and a potential barrier width of 2 spatial units, 

the transmission coefficient is found to be 0. This result indicates that when the wave’s energy is equal 

to the height of the potential barrier, no transmission occurs, and tunneling is effectively prohibited. 

Nevertheless, as shown in Figure 3 (right), the wave function profile is still visibly disturbed in the 

region between -2 and 2, which corresponds to the location of the potential barrier. 

Figure 2. Initial GUI MATLAB 

Figure 3. Input (Left) and Output (Right) in Energy = Potential energy 

Figure 4. Input (Left) and Output (Right) in Energy < Potential energy 
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The tunneling effect is demonstrated in Figure 4, where the wave energy is set to 1 eV significantly 

lower than the potential barrier height of 3 eV. Despite this energy disparity, the transmission 

coefficient is approximately 0.0012, indicating a small but nonzero probability of the wavefunction 

penetrating the barrier. This exemplifies the quintessential quantum behavior that defies classical 

intuition, in which a particle lacking sufficient energy to surmount a barrier can still probabilistically 

"tunnel" through it. Such behavior is not merely theoretical; it underpins real-world phenomena such 

as alpha particle decay in radioactive nuclei, where particles escape the nuclear potential well despite 

having insufficient classical energy. The same principle governs the operation of tunnel diodes, where 

electrons quantum mechanically tunnel through a potential junction, allowing for high-speed switching 

in modern electronic circuits. 

In contrast, Figure 5 presents a scenario where the wave energy (4 eV) exceeds the barrier height 

(3 eV). Here, the transmission coefficient rises sharply to approximately 0.89, reflecting a dramatic 

increase in tunneling probability. However, full transmission is not achieved, demonstrating that even 

when the energy surpasses the barrier, reflection still occurs due to quantum interference effects at the 

potential boundaries. This partial transmission is characteristic of quantum wave behavior and 

highlights the probabilistic nature of quantum transport. The comparison between these two cases 

illustrates how tunneling probability is sensitive not only to the relative energies but also to the 

structure and width of the potential barrier. Such insights, supported visually through the GUI-based 

simulation, provide learners with an intuitive yet rigorous understanding of quantum dynamics 

bridging abstract theory with observable physical behavior. 

In Figure 6, using the same input parameters as in Figure 4 where the wave energy (1 eV) is lower 

than the potential barrier height (3 eV) the width of the barrier is doubled compared to the configuration 

in Figure 3. This adjustment leads to a significantly lower transmission coefficient of approximately 4 

× 10⁻⁷, a sharp decrease from the previous value of 0.0012. This notable reduction illustrates how 

sensitive the tunneling probability is to changes in barrier width. A basic correlation analysis indicates 

that doubling the width results in an exponential decline in the tunneling probability, roughly by a 

factor of 10³. 

This trend aligns well with the prediction of the WKB (Wentzel–Kramers–Brillouin) 

approximation (Takada & Nakamura, 1994), which models the transmission probability T for a 

rectangular barrier as 𝑇 ≈  𝑒−2𝑘𝑎 where 𝑘 =  
√2𝑚(𝑉0−𝐸)

ℏ 
 here, 𝑎 represents the width of the potential 

Figure 5. Input (Left) and Output (Right) in Energy > Potential energy 

Figure 6. Input (Left) and Output (Right) or Varying Potential Barrier Widths 



Navigation Physics : Journal of Physics Education 

p-ISSN 2685-2640 | e-ISNN 2722-5593 

65 
 

barrier, V0 is the barrier height, and E is the energy of the particle. Since T depends exponentially on 

𝑎, even modest increases in width can lead to dramatic reductions in tunneling probability. The 

simulation results in Figure 6 thus not only provide a visual confirmation of this quantum behavior but 

also offer an intuitive way for learners to connect theoretical predictions with observable outcomes.  

Based on the simulations conducted in this study, the transmission coefficient of a wave 

encountering a potential barrier is influenced by the wave’s total energy, as well as the height and 

width of the potential barrier. The use of MATLAB’s GUI provides users with a more accessible and 

intuitive way to analyze the tunneling effect a quantum phenomenon in which particles penetrate 

potential barriers. The designed GUI is expected to serve as an engaging learning alternative for 

students and university learners in studying Quantum Physics, particularly in solving the Schrödinger 

equation and visualizing the tunneling phenomenon more effectively. 

 

4. CONCLUSION 

 

This study successfully analyzed the quantum tunneling effect by solving the one-dimensional 

Schrödinger equation using the finite difference numerical method. The implementation through a 

MATLAB-based Graphical User Interface (GUI) enables more intuitive visualization and allows users 

to interactively explore system parameters. Simulation results show that the transmission coefficient, 

or transmission probability, depends on the particle’s energy as well as the height and width of the 

potential barrier, which aligns with quantum mechanical theory. Thus, solving the Schrödinger equation 

via the GUI offers an effective alternative tool for understanding tunneling phenomena. 

Future work could focus on improving numerical accuracy by employing more precise methods 

than finite difference, extending the model to higher dimensions beyond just the position x, and 

incorporating more complex spatial modeling. Additionally, integrating machine learning techniques 

could provide further insight into tunneling and other quantum physical phenomena. 
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